
Ezblock

sunfounder

Jun 07, 2021

CONTENTS

1 Quick User Guide for Ezblock 3.0 1
1.1 About Ezblock 3 . 1
1.2 Download and Write Ezblock 3 image . 1
1.3 Install Ezblock Studio . 2
1.4 How to enter the V3.0 version? . 3
1.5 How to connect the robot and Ezblock Studio? . 5
1.6 How to Open and Run examples? . 12
1.7 How to go back to V2.0? . 14

2 Tutorials 17
2.1 Get Started . 18
2.2 Remote Control . 24
2.3 IOT-Sensor-Kit . 29

2.3.1 Open the Example . 29
2.3.2 Twilight Switch . 34
2.3.3 Sound Lamp . 35
2.3.4 Noisy . 37
2.3.5 Theremin Organ . 38
2.3.6 Magic Wand . 39
2.3.7 Hot Weather Alarm . 40
2.3.8 Swaying Rainbow . 41
2.3.9 Smart Garage Door . 42
2.3.10 Count 100 . 44
2.3.11 Plant Monitoring . 45

3 References 47
3.1 language . 47

3.1.1 Block . 47
3.1.2 Python . 74

i

ii

CHAPTER

ONE

QUICK USER GUIDE FOR EZBLOCK 3.0

1.1 About Ezblock 3

The biggest optimization of Ezblock App upgrade from Ezblock 2 to Ezblock 3 is to modify the communication
method, v2.0 uses Bluetooth communication, Ezblock 3 uses Websocket communication, which is network com-
munication.

Ezblock 3’s network communication speed will be much faster than Ezblock 2; for the Ezblock 3 version, we have
also optimized and improved the connection process and almost all interfaces to make the APP more smooth and easy
to use.

The Ezblock 3 version should be used with the Ezblock 3 image (Ezblock Studio Download Center.). The v3.0 version
is currently in the public test stage.

If there is a problem during use, please send an email to us, and we will test it several times to ensure that there is no
problem in use.

Here is the Email: cs@sunfounder.com.

1.2 Download and Write Ezblock 3 image

1. Prepare the tool of image burning. Here we use the Etcher. Nowdownload the software from here: Etcher.

2. Download the Raspberry Pi OS for Ezblock 3 Beta image file here: Ezblock Studio Download Center.

3. Unzip the package downloaded and you will see the .img file inside.

Note: Do not extract the .img file.

4. With Etcher, flash the image file into the Micro SD card.

1

https://ezblock.cc/download/index.html
mailto:cs@sunfounder.com
https://www.balena.io/etcher/
https://ezblock.cc/download/index.html

Ezblock

5. At this point, Ezblock for Raspberry Pi is installed. Please insert the Micro SD card into your Raspberry Pi.

1.3 Install Ezblock Studio

Ezblock Studio is a development platform developed by SunFounder designed for beginners to lower the barriers to
getting started with Raspberry Pi.

It has two programming languages: Graphical and Python, and available on almost all different types of devices.

With Bluetooth and Wi-Fi support, you can download code, remote control a Raspberry Pi, on Ezblock Studio.

Open App Store (iOS/Mac OS X system) or Play Store (Android/Windows/Linux system), then search and download
Ezblock Studio.

2 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

1.4 How to enter the V3.0 version?

1. Open Ezblock Studio and log in to your account.

2. Go to your account page by clicking on your avatar in the upper right corner of the home page.

3. Go to the Setting page, and then click About Version.

1.4. How to enter the V3.0 version? 3

Ezblock

4. Click Enter a new version in the pop-up window.

4 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

5. A new pop-up window will appear , select Enter a new version again.

6. After a few minutes of loading, you will enter the V3.0 version.

1.5 How to connect the robot and Ezblock Studio?

1. At this time, there is a pop-up window with an empty device list. You need to power on your robot and turn on
the Bluetooth of your mobile device at the same time, then the robot number will appear.

1.5. How to connect the robot and Ezblock Studio? 5

Ezblock

2. Click Done in the upper right corner, and after a while, Connection Successful will appear.

3. At this point you need to click OK to quickly configure your robot.

6 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

4. Enter your Wi-Fi account and password.

1.5. How to connect the robot and Ezblock Studio? 7

Ezblock

5. Choose the product corresponding to your robot.

8 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

6. Enter a name for your robot.

1.5. How to connect the robot and Ezblock Studio? 9

Ezblock

7. If your robot needs to be calibrated, there will be a prompt telling you that you can enter the calibration page by
clicking Calibration. If it is not needed, the pop-up window disappears and returns to the home page.

10 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

8. The calibration page of each product is different, but there is a reminder which part needs to be calibrated. You
can click the corresponding part, and then refer to the Calibration Help to calibrate. After the calibration is
completed, click Comfirm.

1.5. How to connect the robot and Ezblock Studio? 11

Ezblock

1.6 How to Open and Run examples?

1. On the homepage, click Examples to enter the Examples page. If you just need to simply test these examples,
you only need to click RUN to make your robot work.

12 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

2. If you want to view and modify the code inside, then you need to click Edit. The following picture is the
programming page.

1.6. How to Open and Run examples? 13

Ezblock

1.7 How to go back to V2.0?

1. If you are not used to the V3.0 version of Ezblock, then you can go back to the V2.0 version.

2. Click the menu icon in the upper right corner of the homepage.

3. Click About this App.

14 Chapter 1. Quick User Guide for Ezblock 3.0

Ezblock

4. Click Head to EzBlock version 2.5 to jump to v2.0 version!

1.7. How to go back to V2.0? 15

Ezblock

16 Chapter 1. Quick User Guide for Ezblock 3.0

17

Ezblock

CHAPTER

TWO

TUTORIALS

2.1 Get Started

18 Chapter 2. Tutorials

Ezblock

2.1. Get Started 19

Ezblock

20 Chapter 2. Tutorials

Ezblock

2.1. Get Started 21

Ezblock

22 Chapter 2. Tutorials

Ezblock

2.1. Get Started 23

Ezblock

2.2 Remote Control

24 Chapter 2. Tutorials

Ezblock

2.2. Remote Control 25

Ezblock

26 Chapter 2. Tutorials

Ezblock

2.2. Remote Control 27

Ezblock

28 Chapter 2. Tutorials

Ezblock

2.3 IOT-Sensor-Kit

This page show you the examples provided with IoT Sensor Kit.

2.3.1 Open the Example

1. Select the product as IoT Sensor Kit

2.3. IOT-Sensor-Kit 29

Ezblock

2. Go to Example page

30 Chapter 2. Tutorials

Ezblock

3. Open the example you dare interest

2.3. IOT-Sensor-Kit 31

Ezblock

4. Open tutorials

32 Chapter 2. Tutorials

Ezblock

5. Find the corresponding tutorial

2.3. IOT-Sensor-Kit 33

Ezblock

6. Follow the tutorial to build the circuit

7. Play according to USAGE.

2.3.2 Twilight Switch

In this example, you will use photoresistor to make an automatic sensor light. Before sunset, the light will remain off;
after sunset, the light will automatically turn on.

The circuit is built as follows:

34 Chapter 2. Tutorials

Ezblock

Usage:

1. Flash the code

2. Simulate the “twilight” lighting environment.

3. Change the threshold to the current photoresistor value.

4. Reflash the code

2.3.3 Sound Lamp

In this example, you will create a voice-activated light using a sound sensor. The light will turn on automatically when
there is enough sound. Connecting this light to the Internet allows us to turn off the light remotely at the touch of a
button on the IoT interface.

2.3. IOT-Sensor-Kit 35

Ezblock

The circuit is built as follows:

The IoT control is shown below:

Usage:

1. Modify Wifi Configuration

2. Flash the code

3. Run IoT

36 Chapter 2. Tutorials

Ezblock

2.3.4 Noisy

In this example, you will record the sound sensor readings in a line graph. You can see from the line chart when your
living environment is the noisiest.

The circuit is built as follows:

2.3. IOT-Sensor-Kit 37

Ezblock

The remote controls are as follows:

Usage:

1. Flash the code

2. Run remote control

3. Perform noise testing

4. View Line Chart

2.3.5 Theremin Organ

The Theremin is the only electronic instrument in the world that does not require physical contact to play. Let’s use
ultrasonic sensors to make an instrument that also doesn’t require physical contact!

38 Chapter 2. Tutorials

Ezblock

The circuit is built as follows:

Usage:

1. Flash the code

2. Place your hand directly in front of the ultrasonic sensor

3. Play by swinging the hand to different distances

2.3.6 Magic Wand

Let’s make a magic wand. Tie the RGB module and tilt switch to a small stick. Wave the stick and the light will
change to different colors.

2.3. IOT-Sensor-Kit 39

Ezblock

The circuit is built as follows:

Usage:

1. Flash the code

2. Wave tilt switch

2.3.7 Hot Weather Alarm

Monitor the temperature with the DS18B20! The real-time temperature of the room is seen in the Iot interface. The
circuit is also connected to an RGB light that glows red when it is hot, blue when it is cold, and green when it is
comfortable. You can test the temperature experiment with a cold water bottle or with warm hands.

40 Chapter 2. Tutorials

Ezblock

The circuit is built as follows:

Usage:

1. Flash the code

2. Run IoT

2.3.8 Swaying Rainbow

Control the color of the RGB LEDs with the acceleration in the three axis directions of ADXL345. What happens?
When you wave the ADXL345 at will, the RGB LEDs will change color. When you wave the ADXL345 and the RGB
LED together, a rainbow of colors appears!

2.3. IOT-Sensor-Kit 41

Ezblock

The circuit is built as follows:

Usage:

1. Flash the code

2. Play!

2.3.9 Smart Garage Door

Let’s build a smart garage system where we press button in the IoT interface, the garage door (controlled by servo)
will open and the ultrasonic sensor will sense the car’s position. When the car is far away, the garage door will close
automatically.

42 Chapter 2. Tutorials

Ezblock

The circuit is built as follows:

The IoT control is shown below:

Usage:

1. Modify Wifi Configuration

2. Flash the code

3. Run IoT

2.3. IOT-Sensor-Kit 43

Ezblock

2.3.10 Count 100

Make a little game with button and digital display! The numbers will increase rapidly, so you have to press the button
when the number reaches 100, and if the pinch is successful, You Win!

The circuit is built as follows:

The remote controls are as follows:

Usage:

44 Chapter 2. Tutorials

Ezblock

1. Flash the code

2. Run remote control

3. Play

2.3.11 Plant Monitoring

Make a monitor for your potted plant! With IoT, you can use photoresistor and moisture module to know the current
growing environment of your plants even when you are not at home, and to give them additional light.

The circuit is built as follows:

The IoT control is shown below:

Usage:

2.3. IOT-Sensor-Kit 45

Ezblock

1. Modify Wifi Configuration

2. Flash the code

3. Run IoT

46 Chapter 2. Tutorials

CHAPTER

THREE

REFERENCES

3.1 language

3.1.1 Block

This article introduces the use and annotation of blocks in block programming

Basic

• effect The block placed in Start will only be executed once, which is suitable for some initialization operations
in the block

• effect The content in the block will loop indefinitely

• effect The corresponding content can be output to the console, which can be used for debugging

• parameter "abc" is what you want to output, it can be any type

47

Ezblock

• effect Delay a certain timeSet duration for operation

• parameter "100" Can only be a number type, in milliseconds

Logic

• effect Used to capture changes in variables to respond When the condition is met, that is, when the parameter
value is true, the content of the block will be executed

• effect Compare the left and right parameters, return a Boolean value, return true if the condition is met, otherwise
return false

• parameter The value type on the left and right sides must be the same, for example, both are numbers or both
are characters

• effect It will return a Boolean value, and the parameters on both sides must also be Boolean values. If both
sides are true, return true. If either party is false or both parties are false, return false.

• effect Returns a boolean value, the parameters on both sides must also be boolean values, as
long as either of them is true, it will return true, and only when both are fasle will it

48 Chapter 3. References

Ezblock

return false computational
results:

true
false

• effect Splicing before the block whose return value is Boolean will get the opposite Boolean

value computational results:

false

3.1. language 49

Ezblock

• effect That is, the boolean value true.

• effect That is, the boolean value false.

• effect Generally used to compare or assign values to variables

• effect In fact, it has the same function as the true block and the false block. They are all boolean values,
but this block is more suitable for switch state assignment.

• effect This is a ternary expression, if the return value of test is true then the block after if true will be
executed, and vice versa

50 Chapter 3. References

Ezblock

• example computational results:

equality

Loops

• effect The code in the block will be executed a certain number of times

• parameter The parameter must be an integer, used to specify the number of cycles

• example computational results:

1
2
3
4
5

3.1. language 51

Ezblock

• effect When the conditions are met, the content in the block will be executed repeatedly

• parameter while The type of the parameter is Boolean. When the value of the parameter is true, it will enter
the loop. until The type of the parameter is Boolean. When the value of the parameter is false, it will enter
the loop.

• example computational results:

1
2
3
4
5

If it is until then nothing will be output

• effect Read the specified list from the subscript [0] in order

• parameter The parameter can only be a value of type list

52 Chapter 3. References

Ezblock

• example computational
results:

1
2
3

• effect Set the start number and increment number on the basis of repeat 10 times

• parameter The parameters can only be integers. During the loop, the current subscript value will be assigned
to j, 5 means starting number, 10 means ending number, 2 means increasing number, and in non-special cases,
second Parameter is not greater than the third parameter

• example computational
results:

5
6
7
8
9
10

3.1. language 53

Ezblock

• effect Break and countinue can only be used in a loop block. The execution of break in a loop block will
terminate the entire loop. If countinue is executed, it will jump out of this loop and start the next loop.

computational results:

5
6
7
8
9
10

Math

• effect Usually a digital block for assignment, the parameter can be negative or decimals.

54 Chapter 3. References

Ezblock

• effect Hexadecimal

• effect The two sets of data are mapped in equal proportions, which are commonly used to control analog value
modules.

• effect Generally used for assignment after calculation

• effect Perform selected operations on parameters

• effect Graph formula related operations

3.1. language 55

Ezblock

• effect Needless to say

• effect Determine the type of the parameter and return a Boolean value

• effect Perform operations such as rounding parameters

• effect Get the relevant attributes of the list

• effect Take the remainder

• effect Limit the range of numbers. If it is less than the range, it is assigned to parameter 2, and if it is greater
than the range, it is assigned to parameter 3.

56 Chapter 3. References

Ezblock

• effect Get a random integer in the specified interval

• effect Get random scores

Basic

• effect String value, generally used for assignment or judgment

• effect Used to concatenate strings

• parameter The number of parameters can be any number, the parameters can also be any type, but they will all
be converted to string

• example computational
results:

0.14

3.1. language 57

Ezblock

• effect Concatenated string

• parameter the parameters can be any type, but they will all be converted to string

• effect Returns the length of the string, the return value of int type

• effect Check whether there is a corresponding character in the character, and return the position, if not, return
0You can set to return the position of the first character found, or return the position of the last character

• parameter Both parameters are of string type, the first parameter is the main string, and the second parameter
represents the character to be found in the first parameter

• example computational
results:

1
7

• effect Get the string at the specified position in the text

58 Chapter 3. References

Ezblock

• effect Get the characters between the specified subscripts in the text

• effect don’t say so much

• effect Needless to say

Lists

• effect More often, an empty list is assigned to a variable, or it can be output directly.

• effect Initialize a list, or reassign the list

• effect Assign the same value to the list a certain number of times

3.1. language 59

Ezblock

• effect Read or delete the value of the corresponding position in the list

• effect Modify the value of the corresponding position in the list

• parameter When the position parameter is #, the first parameter indicates that the position can only be of type
int, and the second parameter indicates that the value to be modified can be of any type

• effect Find the corresponding value in the list and return the subscript

• example
computational results:

2

• effect Get a part of the list by subscript

60 Chapter 3. References

Ezblock

• effect Convert the string to a list, add subscripts through the specified symbols

• parameter Only string

• effect Convert the list to a string, and separate them by the specified symbol

• parameter Only list

• example
computational results:

['a', 'b', 'c']
a,*,b,*,c

• effect Get list length

• effect Determine whether the list is empty, return a Boolean value

3.1. language 61

Ezblock

• effect Sort the list in the specified way and return the sorted list

Music

These blocks can only be used in conjunction with some specific blocks, such as picar-x car

• effect Set tone

• effect Set music speed

• effect Set the beat

Colour

Prologue

Colour can only be used with some special modules, such as rgb modules

• effect Variable for outputting a colorm,computer-based color

62 Chapter 3. References

Ezblock

• effect Variable for outputting a colorm,Based on the colors that the rgb module can output

• effect The color is composed of three colors of r, g, and b according to a certain ratio. This block can read the
ratio of r, g, and b of the color value

• effect Get random colors

• effect Create a color according to the custom r, g, b ratio

• parameter The rgb value of ezblock is different from the normal rgb value. Normally, it is 0~255, but the
chromaticity in ezblock is 0~100 (this is also the range of the parameter)

• effect You can mix two colors in a certain ratio

• parameter The parameter can only be a decimal (fraction) less than 1, which will be allocated to colour2
and the rest will be allocated to colour1. For example, if the parameter is 0.4, then the colors will be mixed
in the ratio of colour10.6,colour20.4

3.1. language 63

Ezblock

Variables

effect Add one to the variable. Doing so will make him eat an int type. This block can be used for technology in the
logic block of the loop.

effect Assignment, the value can be any type

effect Variable value, can be judged again, or used in the case of assignment lamp

Functions

• effect Create a function with no return value

• effect Create a function with a return value

64 Chapter 3. References

Ezblock

• effect When certain conditions are met, the function will be terminated and subsequent statements will not be
executed

• effect Call a function you created and execute its contents

• effect Optional when creating a function. Click the gear in the upper left corner of the function block to configure
the parameters. The transmitted parameters can be used directly inside the function computational results:

3.1. language 65

Ezblock

RaspberryPi

Pin

• effect: pin object

• effect: pin objects of buttons and led lights on the expansion board

• effect: Set the mode of the pin to output or input,Set the mode of the pin to output or input, for example, the led
light is output, and the button is input

• effect: Get the status of the specified pin will return 0 or 1

• effect: Setting the pin to off means setting the value of the pin to 0

66 Chapter 3. References

Ezblock

• effect: Setting the pin to on means setting the value of the pin to 1

• effect: Set the state of the pin, the parameter can only be 0 or 1

ADC

• effect Pin object to input analog value,Such as joystick, potentiometer, sound sensor and other modules

• effect Get the value of the corresponding analog pin

PWM

• effect pwm pin object

• effect set the servo angle

• parameter It can only be a numerical value, indicating the angle you want to set, between -90 and 90

3.1. language 67

Ezblock

• effect Set the pwm value directly to adjust the “strength” of the pin

• parameter 0~4095

• effect Set the pwm value by percentage

• parameter 0.00~1.00

• effect Set the evaluation rate of the pin to 50 (cycle 20 milliseconds)

• effect Set the clock rate of the pin pwm unit

• effect Set period

68 Chapter 3. References

Ezblock

System

• effect Connect to wifi

• effect Get the status of the Raspberry Pi

• effect Whether there is this i2c address in the connected device, the return value is Boolean

• effect List all i2c addresses

• effect Send data to the corresponding address

3.1. language 69

Ezblock

• effect Read the data corresponding to the address

• effect Send data to the corresponding address

• effect Read the data corresponding to the address

TextToSpeech

• effect Select the yu’y you want to convert

• effect The input language will be played

70 Chapter 3. References

Ezblock

Camera

• effect The width or height of the detected color. If there are multiple detected colors in the camera, they will be
returned in the order of detection. All widths

• effect Returns the height or width of the face

• effect Return the result of the QR code

• effect Color object for color recognition

• effect Set the color to be detected

• effect Enable or disable color recognition

3.1. language 71

Ezblock

• effect Turn on or turn off face recognition

• effect Enable or disable color recognition

• effect Turn on or turn off face recognition

• effect Enable or disable gesture calibration

• effect Enable or disable gesture detection

• effect Enable or disable QR code detection

72 Chapter 3. References

Ezblock

• effect Enable or disable traffic sign detection

• effect Start or close the camera screen

• effect Object to be detected

• effect Color width or height

• effect The width or height of the face

• effect The width or height of the gesture

3.1. language 73

Ezblock

• effect The width or height of the traffic sign

• effect Start camera

3.1.2 Python

ezblock

Under ezblock, the classes and methods used import everything from ezblock import 123*

Methods

• delay - Delay for the given number of milliseconds.

delay(ms)

• print - replace the original print function to print via bluetooth.

print(msg, end="/n", tag='[DEBUG]')

• mapping - masp a value from a range to another

mapping(x, inmin, inmax, outmin, outmax)

Classes

class Pin - control I/O pins

Usage:

from ezblock import Pin

pin = Pin("D0") # create an Pin object from a pin
val = pin.value() # read an analog value

Constructors

class ezblock.Pin(value) A pin is the basic object to control I/O pins. It has methods to set the mode of the
pin (input, output, etc) and methods to get and set the digital logic level.

74 Chapter 3. References

Ezblock

Methods

• value - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

Pin.value()

Availble pins

• "D0"

• "D1"

• "D2"

• "D3"

• "D4"

• "D5"

• "D6"

• "D7"

• "D8"

• "D9"

• "SW"

• "LED"

class ADC - analog to digital converter

Usage:

from ezblock import ADC

adc = ADC("A0") # create an analog object from a pin
val = adc.read() # read an analog value

Constructors

class ezblock.ADC(pin) Create an ADC object associated with the given pin. This allows you to then read
analog values on that pin.

Methods

• read - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

ADC.read()

111

3.1. language 75

Ezblock

class PWM - pulse width modulation

Usage:

from ezblock import PWM

pwm = PWM('P0') # create an pwm object from a pin
pwm.freq(50) # set freq 50Hz
pwm.prescaler(2) # set prescaler
pwm.period(100) # set period

pwm.pulse_width(10) # set pulse_width
pwm.pulse_width_percent(50) # set pulse_width_percent

Constructors

class ezblock.PWM(channel) Create an PWM object associated with the given pin. This allows you set up
the pwm function on that pin.

Methods

• freq - set the pwm channel freq.

PWM.freq(50)

• prescaler - set the pwm channel prescaler.

PWM.prescaler(50)

• period - set the pwm channel period.

PWM.period(100)

• pulse_width - set the pwm channel pulse_width.

PWM.pulse_width(10)

• pulse_width_percent - set the pwm channel pulse_width_percent.

PWM.pulse_width_percent(50)

class Servo - 3-wire pwm servo driver

Usage:

from ezblock import Servo, PWM

pin = PWM("P0")
ser = Servo(pin) # create an Servo object from a pin
val = ser.angle(60) # set the servo angle

76 Chapter 3. References

Ezblock

Constructors

class ezblock.Servo(pin) Create an Servo object associated with the given pin. This allows you to set the
angle values.

Methods

• angle - set the angle values between -90 and 90.

Servo.angle(90)

class UART - serial communication bus

Usage:

from ezblock import UART

On Raspberry Pi and init later
uart = UART("/dev/serial0") # create an UART object
uart.init(9600) # uart init
uart.read(5) # read up 5 bytes

On Ezblock One and init
uart = UART(1, tx=25, rx=26, baudrate=115200) # create an UART object
buf = [1,3,5]
buf = bytearray(buf)
uart.write(buf) # send a buf

Constructors

class ezblock.UART(device, tx=None, rx=None, baudrate=115200) Create an UART object.
device: On Ezblock Pi, it’s the serial path, like: /dev/xxx(). On Ezblock One, it’s the uart id: 0, 1, 2 tx: pin of tx. rx:
pin of rx

Methods

• init - init the uart.

UART.init(baudrate)

• read - read data.

UART.read(num)

• write - send a buf of bytes.

UART.write(buf)

3.1. language 77

Ezblock

class I2C - IIC bus

Usage:

from ezblock import I2C

i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.MASTER) # create and init as a master

i2c.send('abc') # send 3 bytes
i2c.send(0x42) # send a single byte, given by the number
data = i2c.recv(3) # receive 3 bytes

i2c.is_ready(0x42) # check if slave 0x42 is ready
i2c.scan() # scan for slaves on the bus, returning

a list of valid addresses
i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42,

starting at address 2 in the slave
i2c.mem_write('abc', 0x42, 2, timeout=1000) # write 'abc' (3 bytes) to memory of
→˓slave 0x42

starting at address 2 in the slave,
→˓timeout after 1 second

Constructors

class ezblock.I2C(num) Create an I2C object associated with the given num. This allows you to use i2c on
that device.

Methods

• is_ready - check if slave 0x42 is ready

I2C.is_ready(addr)

• scan - scan for slaves on the bus, returning

I2C.scan()

• send - send several bytes to slave with address

I2C.send(send,addr,timeout)

• recv - # receive one or several bytes

data = i2c.recv(recv,addr,timeout) # receive 3 bytes

• mem_write - Write to the memory of an I2C device

I2C.mem_write(data, addr, memaddr, timeout)

• mem_read - Read from the memory of an I2C device

I2C.mem_read(data, addr, memaddr, timeout)

78 Chapter 3. References

Ezblock

class Remote - remote with ble

Usage:

from ezblock import Remote

remote = Remote() # create an Remote object from
val = remote.read() # read an analog value

slider_val = remote.get_slider_value() # get slider value

Constructors

class ezblock.Remote() Create an Remote object associated with the device.

Methods

• read - Read the name and value of device.

Remote.read()

• get_value - get the value of device.

Remote.get_value()

• get_joystick_value - get the joystick_value of device.

Remote.get_joystick_value()

• get_slider_value - get the slider_value of device.

Remote.get_slider_value()

• get_dpad_value - get the dpad_value of device.

Remote.get_dpad_value()

• get_button_value - get the button_value of device.

Remote.get_button_value()

• get_switch_value - get the switch_value of device.

Remote.get_switch_value()

class IOT - internet of things

Usage:

from ezblock import IOT

iot = IOT()

3.1. language 79

Ezblock

Constructors

class ezblock.IOT(iot_token, device) Create an ADC object associated with the given pin. This al-
lows you to then read analog values on that pin.

Methods

• post - 1

IOT.post(sensorname, value)

• get - 1

IOT.get(sensorname)

class Music - notes and beats

Usage:

from ezblock import Music, Buzzer

m = Music() # create an music object
buzzer = Buzzer("P0")
m.tempo(120) # set current tempo to 120 beat per minute

play middle C, D, E, F ,G, A, B every 1 beat.
buzzer.play(m.note("Middle C"), m.beat(1))
buzzer.play(m.note("Middle D"), m.beat(1))
buzzer.play(m.note("Middle E"), m.beat(1))
buzzer.play(m.note("Middle F"), m.beat(1))
buzzer.play(m.note("Middle G"), m.beat(1))
buzzer.play(m.note("Middle A"), m.beat(1))
buzzer.play(m.note("Middle B"), m.beat(1))

Constructors

class ezblock.Music() Create an Music object. This allows you to then get or control music!

Methods

• note - get frequency of the note. Input string must be in Constant NOTE

Music().note("Middle D")
Music().note("High A#")

• beat - get milisecond from beats. Input value can be float, like 0.5 as half beat, or 0.25 as quarter beat

Music().beat(0.5)
Music().beat(0.125)

• tempo - get/set the tempo. input value is in bmp(beat per second)

80 Chapter 3. References

Ezblock

Music().tempo()
Music().tempo(120)

• play_tone_for - Play tone.Input is note and beat,like Music.note("Middle D"), Music.
beat(0.5)

Music().play_tone_for(Music.note("Middle D"), Music.beat(0.5))

class Color - rgb color

Usage:

from ezblock import Color

c = Color() # create an color object
white = c.color("#ffffff") # hex color
white_led = c.led_color("#ffffff") # hex color for led
color_red = c.get_from("red", "#ffffff") # get red from a rgb color
random_color = c.random() # get random color
color = c.rgb(200, 20, 40) # get color from RGB value
blended = c.blend("#ff0000", "#00ff00", 0.5) # blend 2 color with specific ratio

Constructors

class ezblock.Color() Create an Color object. This allows you to then get or control colors!

Methods

• color - get color from a hex string. this function only test the value if is color format, then returns the input
value.

Color().color("#88ff44")

• led_color - get color from a hex string. this function only test the value if is color format, then returns the
input value. same as color()

Color().led_color("#88ff44")

• get_from - get Red/Green/Blue value from a color.

Color().get_from("red", "#88ff44")

• random - get random color.

Color().random()

• rgb - get color from RGB value. ranlue ranges 0~255.

Color().rgb(200,100,20)

• blend - blend two color with specific ratio. Ratio ranges 0~1, float

3.1. language 81

Ezblock

Color().blend("#ff0000", "#00ff00", 0.5)

class Camera - camera module

Usage:

from ezblock import Camera

cam = Camera() # create an camera object
cam.start() # start camera streaming
cam.stop() # stop camera streaming

Constructors

class ezblock.Camera(res=1, fps=12, port=9000, rotation=0) Create an Camera object.
This allows you to then control the camera!

• res resolution. 0: 320x240, 1: 640x480, 2: 1024x576, 3: 1280x800, default to 1

• fps frame per second. default to 12

• port Streaming port, default to 9000 for ezblock remote panel

• rotation rotation of the video.

Methods

• start - start video streaming value.

Camera().start()

• stop - stop video streaming‘

Camera().stop()

class TTS - text to speech

Usage:

from ezblock import *

tts = TTS() # create an TTS object
tts.say('hello') #write word

tts.write('hi') #write word
tts.lang('en-GB') #change language

tts.supported_lang() #return language

82 Chapter 3. References

Ezblock

Constructors

class ezblock.TTS(engine) Create an TTS object. engine could be "espeak" as Espeak, "gtts" as
Google TTS and polly as AWS Polly

Methods

• say - Write word on TTS.

TTS.say(words)

• lang - Change on TTS.

TTS.lang(language)

• supported_lang - Inquire all supported language.

TTS.supported_lang()

class IRQ - external interrupter

Usage:

from ezblock import IRQ

def callback(line):
print("line =", line)

irq = IRQ('D1',IRQ.IRQ_RISING,callback('D1'))

Constructors

class ezblock.IRQ(pin, trigger, callback) Create an IRQ object associated with the given pin.

Methods

• disable - Disable the interrupt associated with the ExtInt object. This could be useful for debouncing.

IRQ.disable()

• enable - Enable a disabled interrupt.

IRQ.enable()

• line - Return the line number that the pin is mapped to.

IRQ.line()

• swint - Trigger the callback from software.

IRQ.swint()

3.1. language 83

Ezblock

Constance

• IRQ_FALLING - 0

• IRQ_FALLING -

• IRQ_FALLING -

class WiFi - Wi-Fi set up

Usage:

from ezblock import WiFi

wifi = WiFi() # create an WiFi object
wifi.write('CN','sunfounder','sunfounder')

Constructors

class ezblock.WiFi(pin) Create an WiFi object to connect internet.

Methods

• write - write the imformation of wifi then will connect the wifi.

WiFi.write()

class Taskmgr - task manager

Usage:

from ezblock import *

taskmgr = Taskmgr() # create an Taskmgr object
temp_cpu_val = taskmgr.cpu_temperature() # read the temperature of
→˓CPU
temp_gpu_val = taskmgr.gpu_temperature() # read the temperature of
→˓GPU
cpu_usage_val = taskmgr.cpu_usage() # read the cpu_usage
disk_space_val = taskmgr.disk_space() # read the disk_space
disk_used_val = taskmgr.disk_used() # read the disk_used
ram_info_val = taskmgr.ram_info() # read the ram_info
ram_used_val = taskmgr.ram_used() # read the ram_used
read_val = taskmgr.read() # read all the systerm parameter of Pi

Constructors

class ezblock.Taskmgr(pin) Create an Taskmgr object to inquire the parameter of Pi.

84 Chapter 3. References

Ezblock

Methods

• cpu_temperature - inquire the temperature of CPU.

Taskmgr.cpu_temperature()

• gpu_temperature - inquire the temperature of GPU.

Taskmgr.gpu_temperature()

• cpu_usage - inquire the usage of CPU.

Taskmgr.cpu_usage()

• disk_space - inquire the disk_space of Pi.

Taskmgr.disk_space()

• disk_used - inquire the disk_space of Pi.

Taskmgr.disk_used()

• ram_info - inquire the ram_info of Pi.

Taskmgr.ram_info()

• ram_used - inquire the ram_used of Pi.

Taskmgr.ram_used()

• read - inquire all the systerm parameter of Pi.

Taskmgr.read()

class SendMail - email library

Usage:

from ezblock import *

sendmail = SendMail(mail_host, sender, mail_pass) # create an
→˓SendMail object
sendmail.send(receivers, msg, subject) # send a e-Mail

Constructors

class ezblock.SendMail(pin) Create an SendMail object associated with the given pin. This allows you to
then read analog values on that pin.

Methods

• send -You can send mail by thie function.

3.1. language 85

Ezblock

SendMail.send(receivers, msg, subject)

class Ultrasonic - ultrasonic ranging sensor

Usage:

from ezblock import Ultrasonic, Pin

trig = Pin("D0")
echo = Pin("D1")

ultrasonic = Ultrasonic(trig, echo) # create an Ultrasonic object from
→˓pin
val = ultrasonic.read() # read an analog value

Constructors

class ezblock.Ultrasonic(trig, echo) Create an Ultrasonic object associated with the given pin. This
allows you to then read distance values.

Methods

• read - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

Ultrasonic.read(trig, echo)

class DS18X20 - ds18x20 series temperature sensor

Usage:

from ezblock import Pin, DS18X20

pin = Pin("D0") # create pin object
ds = DS18X20(pin) # create an DS18X20 object with PWM object

ds.read(ds.C) # read temperature in celsius(1)
ds.read(0) # read temperature in Fahrenheit(0)

Raspberry Pi only have one one-wire pin “D7”. While Leaf works with almost every digital pins.

Constructors

class ezblock.DS18X20(pin) Create an DS18X20 object associated with the given pin object. This allows
you to then read temperature from DS18X20.

86 Chapter 3. References

Ezblock

Methods

• DS18X20.read - read temperature with the giving unit. it returns a float if only one ds18x20 is connected
to the pin, or it will return a list of all sensor values.

DS18X20.read(unit)

• DS18X20.scan - Scan the ds18x20(s) connected to the pin, returns a list of roms address

DS18X20.scan()

• DS18X20.read_temp - Read temperature(s) with the givving rom(s)

DS18X20.read_temp(rom)

Constants

• DS18X20.C - Celsius

• DS18X20.F - Fahrenheit

class ADXL345 - accelemeter

Usage:

from ezblock import ADXL345

accel = ADXL345() # create an ADXL345 object
x_val = accel.read(accel.X) # read an X(0) value
y_val = accel.read(1) # read an Y(1) value
z_val = accel.read(2) # read an Z(2) value

Constructors

class ezblock.ADXL345(address=0x53) Create an ADXL345 object. This allows you to then read
adxl345 accelerator values.

Methods

• read - Read the value with the axis and return it. Value unit is gravity acceleration(about 9.8m/s2).

ADXL345.read(axis)

Constants

• X - x axis

• Y - y axis

• Z - z axis

3.1. language 87

Ezblock

class RGB_LED - rgb LED

Usage:

from ezblock import PWM, RGB_LED

r = PWM("P0")
g = PWM("P1")
b = PWM("P2")

rgb = RGB_LED(r, g, b) # create an RGB_LED object from a pin
val = rgb.write('#FFFFFF') # write value of value

Constructors

class ezblock.RGB_LED(Rpin, Gpin, Bpin) Create an RGB_LED object associated with the given pin.
This allows you set the color of an RGB LED module. Input Rpin, Gpin, Bpinmust be PWM object from ezblock.
PWM.

Methods

• write - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

RGB_LED.write(color)

class Buzzer - passive buzzer

Usage:

from ezblock import PWM, Buzzer, Music

pwm = PWM("A0") # create pwm object
buzzer = Buzzer(pwm) # create an Buzzer object with PWM object
music = Music() # create music object

buzzer.play(music.note("Low C"), music.beat(1)) # play low C for 1 beat
buzzer.play(music.note("Middle C#")) # play middle C sharp
buzzer.off() # turn buzzer off

Constructors

class ezblock.Buzzer(pwm) Create an Buzzer object associated with the given pwm object. This allows you
to then control buzzer.

Methods

• on - Turn the buzzer on with a square wave

88 Chapter 3. References

Ezblock

Buzzer.on()

• off - Turn the buzzer off

Buzzer.off()

• freq - Set the square wave frequency

Buzzer.freq(frequency)

• play - Play freq, set off if a ms delay arguement is provided.

Buzzer.play(freq, ms)
Buzzer.play(freq)

class Sound - sound sensor

Usage:

from ezblock import Sound, ADC

pin = ADC("A0")
sound = Sound(pin) # create an Sound object from a pin
val = sound.read_raw() # read an analog value

average_val = sound.read_raw(time = 100) # read an average analog value

Constructors

class ezblock.Sound(pin) Create an Sound object associated with the given pin. This allows you to then
read analog values on that pin.

Methods

• read - Read the value on the analog pin and return it. The returned value will be between 0 and 4095.

Sound.read_raw()

class Joystick - 3-axis joystick

Usage:

from ezblock import Joystick, ADC, Pin

x_pin = ADC("A0")
y_pin = ADC("A1")
btn_pin = Pin("D1")

joystick = Joystick(x_pin, y_pin, btn_pin) # create an Joystick object from a
→˓pin

(continues on next page)

3.1. language 89

Ezblock

(continued from previous page)

val = joystick.read(0) # read an axis value
status = joystick.read_status() # read the status of joystick

Constructors

class ezblock.Joystick(pin) Create an Joystick object associated with the given pin. This allows you to
then read values on that pin.

Methods

• read - Read the value on the given pin and return it.

Joystick.read(Xpin, Ypin, Btpin)

• read_status - Read the value on the given pin and return it.

Joystick.read_status()

class BLE - bluetooth driver

PiMobile

Methods

Classes

robothat Module - Robot Control Boards

Usage:

from robothat import *

motor_direction_calibration(1, 1) # Calibrate motor direction of rotation

set_motor_speed(1, 50) # Set the speed of the motor

motor_speed_calibration(10) # Speed calibration of motors
→˓

Constructors

Robothat Module robothat Module allows you to control the robothat board.

Methods

• motor_direction_calibration - Calibrate motor direction of rotation.(motor: 1 or 2,value: 0 or 1))

90 Chapter 3. References

Ezblock

motor_direction_calibration(1,0)

• set_motor_speed - Set the speed of the motor.(motor: 1 or 2,value:0 ~ 100)

set_motor_speed(1,50)

• motor_speed_calibration - #Speed calibration of motors.(value: -100 ~ 100,If the value is greater than zero,the
speed of motor 1 will increase the value.

motor_speed_calibration(10)

3.1. language 91

	Quick User Guide for Ezblock 3.0
	About Ezblock 3
	Download and Write Ezblock 3 image
	Install Ezblock Studio
	How to enter the V3.0 version?
	How to connect the robot and Ezblock Studio?
	How to Open and Run examples?
	How to go back to V2.0?

	Tutorials
	Get Started
	Remote Control
	IOT-Sensor-Kit
	Open the Example
	Twilight Switch
	Sound Lamp
	Noisy
	Theremin Organ
	Magic Wand
	Hot Weather Alarm
	Swaying Rainbow
	Smart Garage Door
	Count 100
	Plant Monitoring

	References
	language
	Block
	Python

